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The Gaussian network theory, suitably modified to take account of the finite 
compressibility o~ an actual rubber, is used to derive the relation between the 
change of volume and the applied stresses in a pure homogeneous strain of 
the most general type. The anisotropy of compressibility is also worked out 
for the case of a pure homogeneous strain maintained by fixed applied forces. 
The formulae derived can be reduced to those previously given by Fiery for 
the particular case of simple extension. It is ]urther shown that the anisotropy 
o] compressibility for a rubber in equilibrium with a swelling liquid is identical 

with that ]or a slightly compressible dry rubber. 

THE treatment of the stress/temperature relations for crosslinked rubbers 
given by Fiery 1, which is based on tha theory of the Gaussian network, 
enables certain approximations introduced into the earlier thermodynamic 
analysis of the stress/temperature relations as given by Gee ~ and by Elliott 
and Lippaaann s to be eliminated. This leads to a more precise formulation 
of the relation between the stress/temperature relations at constant pressure 
and at constant volume. 

The important new departure in Flory's development of the theory was the 
recognition of the significance of the temperature dependence of the 
statistical length of the molecule in the uncrosslinked rubber. This tempera- 
ture dependence arises from energetic interactions within the chain. Pre- 
viously it had been suggested that the internal energy changes observed in 
the extension of rubber were due to .forces between molecules, and that 
these changes should be absent if ~ae extension were carried out at constant 
volume ~. However, if the internal energy corftribution to the stress is 
associated either wholly or partially with internal energy changes within the 
single molecule, it will not disappear under constant volume conditions. 

Since the publication of F~ory's theory direct measurements of the tem- 
perature coefficient of the stress have been carried out by Allen and his 
colleagues *,s. These confirm Flory's analysis in showing a definite energetic 
contribution to the stress at constant volume. 

In the course of his analysis Flory derives expressions for the change of 
volume in simple extension, and for the relative changes in longitudinal and 
transverse dimensions due to a superimposed hydrostatic pl;essure (aniso- 
tropy of compressibility). The main purpose of the present paper is to 
explore in greater detail these mechanical properties of crosslinked rubbers, 
and to examine types of strain other than simple extension. Expressions 
will be derived for the change of volume and for the anisotropy of com- 
pressibility in a pure homogeneous strain of the most general type. 
Attention will also be given to the formal similarity between the mechanical 
properties of a slightly compressible rubber and the corresponding proper- 
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ties of a rubber swollen to equilibrium in ,a liquid of low molecular weight, 
which behaves in certain respects as a highly compressible rubber. 

S T R E S S / S T R A I N  R E L A T I O N S  F O R  P U R E  H O M O G E N E O U S  

S T R A I N  

Helmholtz /ree energy 
In the usual form of the statistical theory of rubber elasticity 5, based on 

the assumption of constancy of volume, the Helmholtz free energy for a pure 
homogeneous strain defined by principal extension ratios hi, h~ and hs .takes 
the form 

a=½vkT 0t~+ h~+ h~-3) (1) 

where v is the number of chains in the network. In the derivation of this 
equation it is assumed that the mean-square length ~ of the chains in the 

unstrained rubber is equal to the mean-square length ~ of a corresponding 

set of free chains. Since tim value of ~ depends, in general, on ,the tempera- 

ture, while ~ is determined by ,the volume of the rubber, it is apparent that 
this assumption will not, in general, be valid. To overcome this difficulty 
Flory introduces a hyp6thetical volume Vo at which the assumption ~ = ~  
would be valid. (V0 is a function of temperature.) Equation (1) then remains 
valid if the extension ratios are calculated on the dimensions in the undis- 
torted state of volume V0. 

This device has the disadvantage th.at the volume V0, and the correspond- 
ing extension ratios hi, h~ and h3, are not observable parameters. It cannot 
be assumed that V0 is even approximately equal to the actual volume; its 
actual value will depend on the temperature of vulcanization, the tempera- 
ture dependence of ~and  the mode of network ,formation (cf. ref. 5, p 81). 
An alternative method of presentation, which is used in the present paper, 
is to define the extension ratios with respect to the unstrained state of 
volume V,. The network free energy may then be written in the form 

o r  

wheret 

a = ½~/,r (~/:0XX~, + x~+ x~3- 3) 

A = ½G" fh~I + h~ + h~- 3) 

(Za) 

(2b) 

G'= z, kT (~ I f0) (3) 

All the quantities in equation (2b) can now be measured, G" being obtained 
directly from the elastic modulus. 

If the finite compressibility of the rubber is taken into account the volume 
V in the strained state will differ from V,, and the expression for the free 
energy will contain a term A*, associated with .the volume occupied by the 
molecules, in addition to the network free energy term (2b). This additional 
term is of the same form as for an ordinary liquid: it is a function of 
volume and temperature only, and is independent of the presence of cross- 
I"G' is to be distinguished from G in Flory's paver I which is defined as vkl .  
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linkages and of network deformation. The complete expression for the free 
energy thus becomes 

A = A* + ½G' (k~l + X~+ X~3 - 3) (4) 

It will also be necessary to refer to a set of extension ratios al, eta, ot~ 
defined with respect to an isotropic state having a volume V equal to the 
final strained volume, the relation between the c~s and the hs being of the 
form 

?t~=al (V  /Vuy  ~3 etc. (5) 
Principal stresses 

Consider a specimen (containing v chains) of cubic form in the unstressed 
state and subjected to normal (tensile).forces I1, [2, f~ on pairs of opposite 
faces. The corresponding strained dimensions being VaJa)tl etc., the area on 
which .the force f~ acts is l/~,/3)t2X3. Since 

V~ V. = XaX2h3 (6) 

the principal stress tl corresponding to the force ]1 is given by 
/3 h 1/8 tl=[1/VZu ~ )~zXs=¢a IV u / V  (7) 

The relation between tl and )~1 may be obtained by equating the change in 
free energy in a further deformation 8hi (at constant h~, ~ and T) ,to the 
work done by the applied force. For the latter we have, fcom the definition 
of hi, together with equation (7) 

~W=l~Vl,  ~' 8Xl =( t lV  / XO 8Xl (8) 

From equation (4) the corresponding change in free energy is 

~A = (  0A/0hi )  ~)~1 =(OA*/O)kl ~ G'XO 81~ (9) 

Since A* is a function of V (and T) only we have 

(OA* I OX,)~ = (OA* / OV)~ (OV l OXl) (10) 
Further, since A* has the same form as for an ordinary liquid we may write 

(OA* /OV)r = - p* (11) 

where p* is an effective pressure; - p *  represents that part of the applied 
stress not borne by .the network. Also from equation (6) 

OVlOX, = VIA,  (12) 

Hence equation (9) becomes 

~A = ( -- p~V/)~l + G')~I) ~Xl (13) 

Equating 8A to 8W, as given by equation (8), we obtain 

t~ = - p,* + (G'] V)  X~ (14a) 
and similarly 

t~ = - p* + ( G ' / V )  h~ (14b) 

t3 = - p *  + ( G ' / V )  X~ (14c) 
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The principal stress differences do not contain p*, i.e. 

h - h = ( G ' / V )  (h]-h~) etc. 

while for simple extension, with 

X~=X2~=V/VJq ; h = t 3 = 0  

h=(G' /V)  (X',- V/V.XO 

(15) 

(10 
(17) 

V O L U M E  C H A N G E  D U E  T O  S T R E S S  

Equations (14) above are formally similar to the corresponding stress/strain 
relations fo~ an incompressible ~abber, which are of .the form ~ 

h = p + ( G ' / V )  h~l (18) 

where p is an arbitrary constant, equivalent .to a hydrostatic pressure. 
Equation (18) implies that for an incompressible rubber, for which V is 
constant, the stresses corresponding to a given state of strain are indeter- 
minate. However, if one of the principal stresses is known (as in simple 
extension) this determines p and hence also the remaining stresses. In a 
compressible rubber, on the other hand, the specification of h~, X2 and M 
(and hence of V) automatically fixes p* and hence uniquely determines the 
principal stresses. 

.The .relation between p* and V involves lhe compressibility K. Fox" the 
small volume changes with which we are concerned ( A V / V  ~ 10 -4) we may 
assume a linear relation of a form .similar to that for a liquid, i.e. 

p*= - ( l /K)  ( V -  VI) /V (19) 

in which V~ is the volume at which p* = 0. This volume is not the stress- 
free volume V. of the crosslinked rubber, but the volume which would be 
occupied by the uncrosslinked molecules at zero pressure. [This follows 
from the definition of A*, from which p* is derived, see equation (11)]. 
Unlike Vu, the quantity V~ is not accessible to direct measurement; its value 
can, however, be derived from Vu by the application of equations (14) to 
the crosslinked rubber in the stress-free state. For this state h = h = t~ = 0, 
At = X2 = h3 = I and V = V,. Thus, from equation (14a) 

- p * + G ' / V ~ = O  ; p * = G ' / V .  (20) 

Insertion of this value of p* into equation (19) then gives 

V~ = V.  + KG" (21) 

Equation (19) may now be used, with this value of 1,'1, to determine p* in 
any other state of strain, i.e. 

p* = (V - V . ) / K V +  G ' / V  (22) 

The resulting principal stresses [equations (14)] may thus be written in the 
form 

h = (V - Vu) / K V  + (G" / V)(h]- 1) (23) 

with corresponding expressions for t~ and ts. 
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Equations (23) etc. relate the principal stresses to the change of volume 
which accompanies the application of the stress. Alternatively, given the 
value of the stress, they may be used to calculate the change of volume. 
This may be illustrated by the case of simple elongation considered below. 

Application to simple extension 
For a simple extension hi, we have t~ = t3 = 0. Application of the equation 

for t2 corresponding to (23) gives (putting V - V, =AV), 

h = O = A V / K V +  (G'/V)(X~- 1) 

or, from equation (16) 

AV / V =- (K G" / V)(1 - V~ V,h~) (24) 

In terms of the extension ratio al  defined by equation (5) this becomes 

A V / V  = ( K G ' / V ) ( 1  - ( V / V . )  :/3 (1/or,) ] (25) 

This may be compared with Flory's expression z 

A V / V = ( K L v k T / V ) ( V / V o )  2/3 (1 - 1/oq) (26) 

in which KL is the compressibility at constant length. This is related to K 
by the equatio# 

KL -- 1 = K -1 + v k T  / 2V (27) 

For typical rubbers the term v k T / 2 V  is of the order of 10 -~ of K -1, hence 
KL ~ K. The quantity (V/Vo) 2/3 is by definition equal .to ~ /~ .  Bearing in 
mind the definition of G" [equation (3)] Flory's expression is equivalent to 

A V / V = ( K L G ' / V ) ( 1  - 1 / c Q ~  (KG'/V)(1 - 1/c~x) (26a) 

Comparing this with (25), we note that V~ V. - 1 > 0 as cq ~ 1, and that 
V/V.  - 1 ~ 10 -4 at a~ = 2"0 (ref. 4). Hence, for practical purposes, 

1 - ( V l  V . )  ~/3 (1/cq)  ~- 1 - .1 /or ,  

and expressions (25) and (26a) are substantially equivalent. 

Effect o] superimposed hydrostatic pressure 
In the preceding analysis the principal stresses tl, t2, t~ and the correspond- 

ing forces fa, I2, f3 are the total stresses and total forces acting. When a 
superimposed hydrostatic pressure, e.g. the atmospheric pressure, is present, 
the derivation of the volume change in terms of the forces actually applied 
(or the corresponding partial stresses) requires further examination. The 
analysis, which is given in the Appendix, shows that, in fact, the results are 
not significantly affected. 

A N I S O T R O P Y  O F  C O M P R E S S I B I L I T Y  

In the general thermodynamic treatment of the stress/temperature relations 
for rubbers in simple extension as developed by Gee 2, an important quantity 
is the anisotropy of compressibility under constant tensile force. Gee 
assumed as a first approximation that the material remained isotropic with 
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respect to a superimposed hydrostatic pressure, i.e. that the relation between 
changes of length I and volume V is 

V ( O I )  [ O l n l  ~ 1 (28) 
T -b-9 ~ = \ O - - i ~ / ,  = 

as for the unstrained state. 
On the basis of Flory's theory the anisotropy of compressibility arises 

solely from the  properties of the crosslinked network and may readily be 
calculated. For simple extension the result obtained by Flory is 

(0 In l/O In V h :  1/(a31+ 2) (29) 

which can be reduced to equation (28) in the limit when oh > 1. 
In the treatment given below, the anisotropy of compressibility is calcu- 

lated for the ease of a pure homogeneous strain of the most general type. 
Consider as before a specimen in the form of a cube in the stress-free 

state which is deformed to dimensions ,,~,~ ~ rz~/3, )t~V~/~, ~V1/S by normal forces 
fx, h, h acting in the directions of the principal extensions together with a 
superimposed hydrostatic'pressure p. Since the force fl acts on an area 
V/V1/,3X~, the stress acting in the direction h~ is (cf. Appendix). 

h = IA1V~/~ / V - p (30a) 
and similarly 

1/3 h = 12h~V. / V - p (30b) 
whence 

(31) t~ - h = (v~V vx/ixl - f~x~) 

But from equation (15) the difference of principal stresses is given by 

h "-- t, = (G' /V)(X] - X~) (32) 

Equating the right-hand sides of (3t) and (32) we obtain 

[1 = fzX3/ Xl + G t g u  1/~ (Xa - X~/ )tl) (33) 

We require the relation between the changes in X1 and X~ produced by a 
change in p at constant I1, f~ and fs. We therefore write 

dr1 = (Ofl / Ohm) t2 ' 13. ~2 dhl + (Of~ / OXo) '2, q, At dX3 = 0 (34) 

From equation (33) we have 

(O/l/OaO ,zq, x~ = - / A 2 / h ' I + G ' V - I  1/3 (1 +h~/X~ (35) 

(011 / Oh2), 2, q. ~1 = f~/ hi -2G'V2~/sX2/X~ (36) 

Hence, from (34) for constant f~ (as well as constant Is and f3) 

[( - 12hs/X~ + G ' V ~  ~/3 (1 + h~/Xs)] dXl = - (h/Xa - 2G'V-~/3X,/XO dX2 

which gives, on simplification 

(0hl~ f2hl -- 2G" Vff 113X1h2 
--0-~] 'l,'r q = / A ~  - G ' V z  ~/3 (X,* + hi) (37) 
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This, 
changes in dimensions for variations of p at constant [1, 12 and [~. 
change in volume corresponding to a change of pressure dp is 

dV/V  = dXl/Xt + dXz/h, + dh~/M 
Hence 

dV ( l +  h.~ Oh, hi Ohs~ dhl 
-V-= \ hZ oh--7 + ~  ~ !  

with the corresponding expression for .OhUOh~, gives the relative 
The 

(38) 

With the help of equations of the type (37) this enables OVIOhl, etc. to be 
obtained. The full expressions will not be written out. 

Two-dimensional extension 
For the particular case when f3=0, corresponding to a two-dimensional 

extension under forces f~ and [2, we write the equation for (0ht/0h~)q. q. q cor- 
responding to (37) and put fa = 0. The result is 

and similarly, 

and therefore 

(OX,I 0X,) 'r'. = 2hO~/(X', + G~) 

(0x,/0 h,) ,1.,. = 2X,X,/(X] + X~) 

(/3 = O) (39a) 

(Js=O) (39b) 

(0hi/0M) h.', = h,(K~ + h23)/{ M(h~ + h~)} qs = 0) (39c) 

Unlike equation (36), these expressions do not involve the forces directly. 
This is because when/3 = 0 the stress t~ = - p ,  and the remaining stresses can 
be directly related to the extension ratios [equations (14)]. 

If hi and h2 are both large, h~ is small compared with h~ or h~. Equation 
(39c) then gives the approximation 

, ~ ~ ~ ([s=0) (39d) 

Simple extension 
For simple extension in the direction h~, h = f3 = 0 and h2., = Mj = V~ V~hl. 

Equation (39c) can then be reduced to 

~ / , i -  \-~~/,,= x~ + ~ (40) 

Thus, from (38) 

With (16) this becomes 

(41) dV i8 V. = ( 2 +  V [ 2 + h ~ ( - ~ l ]  d ~  ~ ) ~  

from equation (5). This is equivalent to Flory's result [equation (29)]. 
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C O M P A R I S O N  W I T H  S W O L L E N  I N C O M P R E S S I B L E  R U B B E R  

An interesting analogy exists between the mechanical properties, and in 
particular the anisotropy of compressibility, for a slightly compressible dry 
rubber and the corresponding properties of a rubber swollen to equilibrium 
in a liquid Of low molecular weight. In the treatment of swelling it is 
customary to assume that the volumes of the rubber and liquid components 
are additive and independent of applied stress, i.e. for a fixed composition 
the system is treated as incompressible. If, however, the further condition 
is introduced that the swollen rubber is in equilibrium with the surrounding 
liquid, the liquid content becomes a function of the stress, the effect of a 
hydrostatic pressure, for example, being to reduce the liquid content, i.e. the 
swollen volume. Under these conditions the swollen rubber is formally 
analogous to a highly compressible dry rubber. 

As in the case of the unswollen rubber, we consider a specimen main- 
tained in a state of pure homogeneous strain, defined by extension ratios 
X1, X2, X3 referred to the unstrained unswollen state of volume V~ by forces 

Stress/strain relations 
The total free energy of the system is the sum of two components, of 

which the first, Am, represents the free energy of mixing of the liquid and 
polymer molecules in the uncrosslinked state, while the second, Ae, repre- 
sents the free energy of network deformation in the combined swelling and 
straining. Thus 

A = Am + ½G' (X2~ + X~ + X2~ - 3) (42) 

where G' is defined by (3), as before. Carrying out the analysis in a manner 
entirely analogous to that given previously, the principal stresses may be 
expressed by equations of the type 

tl = Ao~/ I/1 + ( G" / V)h' 1 (43) 

in which V~ is the molar volume of the swelling liquid, V is the volume of 
the swollen rubber and A0~ is the molar free energy of dilution c~Am/c~no, 
where nn is the number of moles of liquid in the mixture. The quantity 
A ~ / V I  is thus the free energy change per unit volume of the liquid com- 
ponent which, assuming additivity of volumes, is equal to OA~/OV. For 
A0~ it is usual to assume the Flory-Higgins formula 6 

Ao~=RT[In  (1 -v~)+ v,+ X~ ~ (44) 

where ~ is the volume fraction of rubber ( V J V )  in the swollen state and X 
is an interaction parameter whose value depends on the particular rubber 
and liquid considered. For the present purpose, however, the form of A0~ 
is irrelevant. 

Comparison of equation (43) with (14a) shows the formal similarity to 
the corresponding equation for an unswollen rubber, taking into account 
compressibility effects. The only difference is the replacement of - p *  by 
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Ao~/V1. The differences of principal stresses, derived from equations of 
type (43), are given by identical expressions, i.e. 

t~ - t~=(C/ / V)  (h~l - k~) (45) 

Anisotropy of compressibility 
As in the case of an unswollen rubber, we now consider the sample sub- 

jected to applied forces J1,/2, f3, swollen to equilibrium in a liquid at the 
hydrostatic pressure p. The stress tl will now be the resultant of the con- 
tribution due to fl and the pressure p. Hence, if Vu is the unstrained 
unswollen volume 

tl =fxhxVXJS / V  - p etc. (46) 

The relation between t~ and fi is thus formally identical to that for an 
unswollen rubber [equation (30a)], and since the principal stress differences 
are also described by identical relations [cf. (15) and (45)], all the subse- 
quent relations derived from equations (15)and (30) remain valid. Hence 
the results represented by equations (36) to (41) are equally applicable to 
the case of a swollen rubber. 

It is to be noted that these relations do not involve the absolute values of 
the dimensional changes for a given ,change of pressure (or other stress 
components), which would, of course, be very different in the two cases. 
They are concerned only with relative changes in dimensions. The conclu- 
sion that these relative changes are the same for a highly swollen rubber as 
for a slightly compressible dry rubber is a consequence of the assumption 
that in both cases we are concerned with the free energy of network deform- 
ation, irrespective of the mechanism by which the volume of the system is 
determined. It is this aspect of the problem which is represented mathe- 
matically by the identical expressions for the network free energy in 
equations (4) and (42). 

D I S C U S S I O N  
It is important to recognize the limitations of the general method of 
approach used in the present work. Being based on a physical model, the 
conclusions arrived at do not have the universal validity of a purely thermo- 
dynamic analysis of the type given in Gee's origina/ papel ~. The most 
significant assumption, in the present context, is that the anisotropy of 
compressibility is purely a network property. It would be surprising if this 
were strictly true, particularly at high degrees of orientation, where some 
degree of anisotropy of intermolecular force fields would be expected to 
arise. However, the accurate prediction by the network theory of the 
effects of strain on the degree of swelling 7 suggests that these effects are 
probably not very important in practice. 

APPENDIX 
E F F E C T  O F  S U P E R I M P O S E D  H Y D R O S T A T I C  P R E S S U R E  
Let us suppose, as before, that [1, [5, [~, are now the actual forces applied, 
and that p is the added pressure. We will denote by t'l, t'~, t'3 the part of the 
stress due to the applied forces, while retaining t~, t2, ta for the total (tensile) 
stresses. Then 

tl = t~ - p etc. (46) 
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Equation (23) then gives 

t'~- p = (V - V,) /K V + (G" / V)(h] - 1) (47) 

where, as before, V, is the volume at zero (total) stress. Introducing the 
isotropic volume V'~ at the pressure p, we have, from (47), in the absence 
of other applied forces, i.e. for ~ = 0 

- P =  KV'~ F - ~  ~ - I  (48) 

For pressures of about one atmosphere (V" -  V . ) / V ~  10 -~, hence we may 
put 

(V" - V~) / V" ~ (V'.  - V 3  V~ ~.  (V" - V~) / V  

and similarly 

o'/v'~ ~G' /V  

Elimination of p between (47) and (48) then gives 

~ v - v .  cs v .  2, 
g V  + -V (49) 

In terms of the extension ration )t'~ referred to the isotropic state at the 
pressure p, where 

• / T i t  X l / 8  _ _  X T]~-ia  ~'z k v u . I  - - t ~ . z r  i~ 

this becomes 

~_ V-V'~ G' ( V ' )  2n 
KV +-V ~ (~?.  1) (5o) 

The factor (V"/V.) ~/s is not significantly different from unity. Hence we 
may write 

t ~  v-v'~ G' 
KV + -V ( k ? -  1) (51) 

This equation is of the same form as equation (23). Thus the relation 
between the partial stress (calculated as if p were absent) and the change of 
volume due to the applied forces is, to a close approximation, unaffected by 
the presence of a hydrostatic pressure. 
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